Technical Report Documentation Page

1. Report No. FHWA/VA–IR2	2. Government Access	sion No. 3. I	Recipient's Catalog I	No.		
4. Title and Subtitle Construction of Thin-Bonded Portland Cement Concrete Overlay Using Accelerated Paving Techniques			5. Report Date January 1992			
			Performing Organiza			
			Performing Organiza	tion Report No.		
7. Author(s) K. H. McGhee & C. Ozyildirii	m		VTRC 92–IR1			
9. Performing Organization Name and Address		10.	Work Unit No. (TRA	IS)		
Virginia Transportation Rese Box 3817, University Station		11.	Contract or Grant N			
Charlottesville, Virginia 229	03-0817		D1FH71-89	9-201-VA-14		
12. Sponsoring Agency Name and Address		13.	Type of Report and			
Virginia Department of Trans	sportation		Installation	n		
1401 E. Broad Street Richmond, Virginia 23219	-	14.	Sponsoring Agency	Code		
	15. Supplementary Notes Research conducted under contract to Federal Highway Administration, U.S. Department of Transportation.					
16. Abstract The report describes the Virginia Department of Transportations' first modern experience with the construction of thin-bonded portland cement concrete overlays of existing concrete pavements and with the fast track mode of rigid paving. The study was conducted in cooperation with the Federal Highway Administration (FHWA) and used a paving mixture verified in an FHWA mobile laboratory. The study showed that the fast track mode will permit lane closure times as short as 48 hours. Of spe- cial interest was the finding that adequate strength of the bond between the old pavement and the overlay is not dependent on the use of a bonding grout.						
17. Key Words		18. Distribution Statement				
bonded overlays, fast track, bond strength, bonding grout		No restrictions.				
19. Security Clasif. (of this report)	20. Security Classif. (o	f this page)	21. No. of Pages	22. Price		
Unclassified Unclassified			21			

INSTALLATION REPORT

CONSTRUCTION OF A THIN-BONDED PORTLAND CEMENT CONCRETE OVERLAY USING ACCELERATED PAVING TECHNIQUES

K. H. McGhee Senior Research Scientist

> Celik Ozyildirim Research Scientist

(The opinions, findings, and conclusions expressed in this report are those of the authors and not necessarily those of the sponsoring agencies.)

Virginia Transportation Research Council (A Cooperative Organization Sponsored Jointly by the Virginia Department of Transportation and the University of Virginia)

In Cooperation with the U.S. Department of Transportation Federal Highway Administration

Charlottesville, Virginia

January 1992 VTRC 92-IR2

ABSTRACT

This report describes the Virginia Department of Transportations' first modern experience with the construction of thin-bonded portland cement concrete overlays of existing concrete pavements using the fast-track mode of rigid paving. The study was conducted in cooperation with the Federal Highway Administration and used a paving mixture verified in an Federal Highway Administration mobile laboratory. The study showed that the pavement could be overlaid and opened to traffic within the 48-hour time required. Of special interest was the finding that adequate strength of the bond between the old pavement and the overlay is not dependent on the use of a bonding grout.

INSTALLATION REPORT

CONSTRUCTION OF A THIN-BONDED PORTLAND CEMENT CONCRETE OVERLAY USING ACCELERATED PAVING TECHNIQUES

K. H. McGhee Senior Research Scientist

Celik Ozyildirim Research Scientist

INTRODUCTION

The placement of new concrete overlays on old concrete pavements is not a new technology. In fact, several such overlays were constructed in Virginia as early as the 1920s.¹ Even thin-bonded overlays are not particularly new; they have been used for a number of years as an acceptable rehabilitation alternative for old concrete pavement, both jointed and continuously reinforced.² A general requirement is that the underlying (old) concrete should be in reasonably good structural condition so as to adequately support the overlay. Thus, thin-bonded overlays typically have been used to structurally enhance sound pavements in anticipation of increased traffic volumes and loads.

The construction of such overlays using slip-form pavers in a "fast-track mode" (rapid construction) is a relatively new technology first introduced in IOWA in 1986.^{3,4} The promoters of this technology are candid in admitting that a major impetus to its development is an attempt to provide and demonstrate a construction window (lane closure time) that would compete favorably with that of asphaltic concrete overlays and would, therefore, make concrete overlays more acceptable to both the traveling public and to maintenance engineers.

Recognizing that a competitive climate between the two paving industries is an important economic issue, the Virginia Department of Transportation (VDOT) through the Virginia Transportation Research Council and in cooperation with the Federal Highway Administration (FHWA) set out in 1988 to find a suitable Virginia location on which to try a thin-bonded overlay. Among a number of sites considered, were several on interstate routes where the limited access feature lends itself well to the construction operations involved. Sites with high traffic volumes were not considered acceptable by VDOT because of the experimental nature of the work. A site on U.S. Route 13 in Northampton County was chosen as the one most nearly fitting the requirements of the study. This is an old concrete pavement still in reasonably good condition with moderate traffic volume. The 1-mile section chosen for the fast-track project has only one side entrance to be accommodated during construction of the overlay.

PURPOSE

The major purpose of the project was to evaluate the feasibility of constructing a thin-bonded portland cement concrete overlay of an existing concrete pavement in a fast-track mode so as to minimize lane closure times. A second purpose was to evaluate the performance of the overlay over a five-year period. Unfortunately, the experimental nature of the project prohibited any realistic evaluation of costs that might apply to a similar nonexperimental project.

HISTORY OF EXISTING PAVEMENT

The existing concrete pavement on the fast-track project was constructed in 1965. The original design consisted of a native sand and gravel subgrade topped with a sand and gravel select material used as a subbase. The concrete pavement was 8-in thick with transverse joints spaced at 20 ft. Joints were undowelled and sealed with a hot-poured rubberized asphalt. Traffic records indicate that the section had sustained approximately 2.2 million 18 kip equivalent single axle loads (ESAL) in the outside lane. Although project records did not indicate the design ESAL, traffic records indicate a rather modest growth of approximately 2.5 percent annually since 1980.

The major distresses manifested by the old pavement were joint faulting and a few instances of joint spalling. Some slabs had failed because of longitudinal cracking. Preliminary distress surveys available in VDOT files provided background material for evaluation of the performance of the overlay.

SPECIFICATION DEVELOPMENT

The development of construction specifications for the project was a cooperative effort of VDOT, the Federal Highway Administration, and the American Concrete Paving Association (ACPA). Because of the time constraints inherent in the process, several iterations were necessary before an acceptable specification was realized and made available for bidding purposes. The major elements of the project, many of which will be discussed in more detail later in this report were:

- 1. The project consisted of the design and placement of a nominal 3 1/2-inch thick thin-bonded overlay applied to the prepared surface of the old pavement.
- 2. The old pavement was repaired to restore any areas of structural failure so as to give the overlay a more uniform foundation.
- 3. The paving portion of the project was constructed in a fast-track mode with a lane closure time of 48 hours beginning with the initiation of concrete placement and ending with the removal of the curing blanket.

PRELIMINARY TESTING

Trial Concrete Batches

For the fast-track overlay, Class A3 concrete (see Table 1) with the following specifications was required.

- The minimum cement content should be 750 lb/yd³.
- The maximum water-cement ratio should be 0.42.
- The minimum compressive strength at 24 hours should be 3,000 psi.
- The coarse aggregate size should be #57 or #68.
- The use of a water-reducing admixture should meet AASHTO M 194 standards.

Special provisions stated that for bonding the overlay to the base concrete, a grout (portland cement, sand, and water) should be applied on the clean dry surface when the ambient temperature was 90° F or below. At higher temperatures, the base concrete surface should be in a saturated surface dry condition. The grout should contain the same portland cement as the overlay and should have a maximum w/c of 0.45. Thus, the grout quality would approximate that of the paving concrete. Curing of the overlay should be with a liquid membrane seal applied at a dosage of 1.5 times the standard rate. The membrane seal is followed by insulating blankets consisting of closed-cell polystyrene foam having a minimum R value of 0.5 and protected on one side by a plastic film.

The contractor selected a prestressing plant at Cape Charles, Virginia, located close to the job site, to furnish the concrete. Two sets of trial batches were used to develop mixture proportions and evaluate the bonding of the overlay.

Table 1

VIRGINIA DEPARTMENT OF TRANSPORTATION CLASS A3 PAVING CONCRETE (from 1987 Road and Bridge Specifications)

Compressive Strength at 28 days (min)	3,000 psi
Aggregate size number	57
Nominal maximum aggregate size	1
Cement content (min)	564
Water-cement ratio (max)	0.49
Slump (in)	0-3
Air Content	6±2 %

The first trial set was made in April 1989 in cooperation with the FHWA Demonstration Projects division using the Council's laboratory facilities and the mobile concrete laboratory of the FHWA and included a trip to the plant with the mobile laboratory and some batching at the plant. The second set of trial batches was made in May 1990 at the plant.

First Set of Trial Batches

In the first set, 11 batches of concrete were prepared using the materials furnished by the plant at Cape Charles as well as materials available in the laboratory. These batches are explained in detail in the FHWA report on the study.⁵ Two cements were used. One was a finely ground Type II cement obtained from the plant; the other was a Type III cement available in the laboratory. The chemical and physical analysis of the cements are given in Table 2. The coarse aggregate furnished by the plant was crushed granite from Stafford County, and the fine aggregate was siliceous sand from King George County. The water-cement ratio (w/c) was variable with a maximum of 0.42. Either a water-reducing admixture (WR), or a water-reducing and retarding admixture (WR+R) with minimal retardation at low dosages (as claimed by the producer) were used. Experimental batches were made using the above-mentioned materials and admixtures. Some of these

1	a	p]	e	2

Chemical (%)	Type II	Type III
SiO ₂	21.1	20.7
A1 ₂ O ₃	4.3	5.0
Fe ₂ O ₃	3.4	2.2
CaO	63.0	63.0
MgO	3.7	3.1
SO_3	2.8	3.9
Total Alkalies	0.57	0.69
C ₃ S	54.4	52.0
C ₃ A	5.6	9.0
Physical	Type II	Type III
Fineness (m ² /kg)	511	538

CHEMICAL AND PHYSICAL ANALYSES OF CEMENTS

included a sand having a better particle shape than the one used in normal plant production. Others contained a high-range water-reducing admixture or fly ash in order to provide the range of workability and strength that could be achieved at early ages with the available materials. All of the batches contained a neutralized vinsol resin as an air-entraining admixture to provide the specified air content ($6\pm 2\%$). Compressive strengths were determined at different early ages by testing 4-in by 8-in cylinders in accordance with AASHTO T 22 using neoprene pads in retaining rings. The results indicated that the various combinations of w/c and high- range water-reducing admixtures (HRWR) with the job materials were capable of reaching the required strength of 3000 psi within 24 hours. This strength was attained as early as 12 hours with a w/c of 0.35 and a HRWR. However because of economy, better workability, and a close resemblance to a mixture commonly used at the plant, trial mixture TB 11 (see Table 3) was chosen for the experimental installation. The w/c of 0.415 and the 3-in slump were attained without the use of a HRWR. This mixture attained 3,000 psi in about 23 hours.

Subsequently, the mobile concrete laboratory was moved to the plant and a 2 yd^3 batch with the same proportions as TB11 was prepared using a 4 yd^3 capacity stationary concrete mixer. The results indicated that 3,000 psi was achieved with this batch in 24 hours.

Both at the laboratory and at the plant, the maturity method (ASTM C 1074) and the pulse-velocity method (ASTM C 597) were used to predict the strength of the concrete. These methods are explained in the FHWA report. One significant advantage in these methods besides their convenience is that testing is in-situ; consequently, the actual strengths developed in the pavement are determined. This contrasts with conventional concrete testing in which strengths are obtained using test cylinders. Because of their small mass, much lower heats of hydration are usually generated in the cylinders, which leads to lower early strengths than those in the structure the cylinders represent. Because of the need to open fast-track projects to traffic as soon as possible, determination of the actual early strength of the concrete in the pavement is needed, and conventional test methods are not suitable.

Table 3

	TB11	Job
Cement	750	750
Maximum water	311	315
Coarse aggregate	1,902	1,877
Fine aggregate	1,065	1,045

MIXTURE PROPORTIONS IN LB/YD³

The data on temperature gradients is also useful in predicting the possibility of thermal cracking.

While the maturity and pulse-velocity methods appear useful in estimating the early strength of concrete, the variability in test results, the need for specialized equipment, and the need for correlation of the pulse-velocity and conventional test results using job concretes limit their usefulness for formal acceptance testing.

Second Set of Trial Batches

The specifications required the use of grout as a bonding material, and a minimum bond strength of 200 psi at 24 hours when tested in tension using the method described in ACI 503R. Most bonded fast-track overlays have used a bonding grout, but American Concrete Paving Association (ACPA) representatives expressed concerns about it's necessity. Thus, in May 1990, more trial batches were made to determine whether a bonding material was necessary, and also to determine the workability and finishing characteristics of the concrete using commercially available admixtures. Tests were also conducted to determine whether a different type or brand of cement other than that used in the paving concrete and with a higher w/c than the 0.45 maximum specified was adequate for the bonding material should it be required. A WR from one producer and WR+R at two different dosages from another producer were tried. Thus, three batches of concrete were prepared using the job proportions given in Table 4. The maximum w/c of the overlay concrete was 0.42. A 3.5-in overlay was placed in three sections (Table 4) over an existing concrete slab at the plant. The surface of the slab was shotblasted as it would be in an actual job to properly clean the surface of the base concrete. The grout was prepared using two different proportions and two different cements (Type I and Type II) as shown in Table 4 and was pumped and scrubbed on the surface. Grout in section 1 had 5 gallons of water for 1 bag of cement (w/c=0.44) which met the specifications (maximum w/c=0.45) but was difficult to pump. Therefore, in other sections, 6 gallons of water for 1 bag of cement(w/c=0.53) were used.

At an age of 24 hours, the compressive strengths of the concretes were determined at the plant. The results are summarized in Table 5 and indicate that 3000 psi could be achieved in 24 hours. Some of the 4-in by 8-in specimens were kept in an insulated box while others were left under the curing blanket. As expected, the

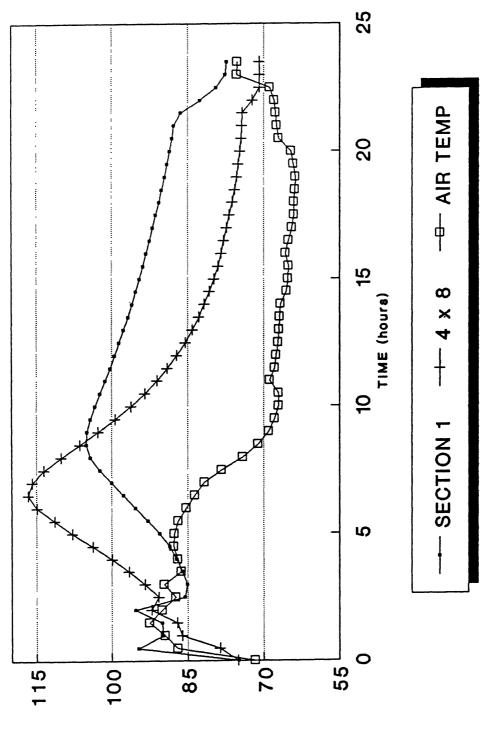
Table 4

Section	w/c	Cement
1	0.44	Туре І
2	0.53	Туре І
3	0.53	Туре II

GROUT PROPORTIONS AND TYPE OF CEMENT

Table 5

Section	Admixture	Insulated Box	Under Blanket
1	WR + R	4,020	2,950
2	WR	4,460	3,200
3	$WR + R^a$	_	3,000


24-HOUR COMPRESSIVE STRENGTH FOR THE TRIAL SECTIONS

^aTwice the dosage rate used in Section 1.

retention of heat was an important factor in achieving the early strengths. The specimens in the insulated box had about 37 percent higher strength than the ones under the blanket. The temperature of the insulated box was about $120^{\circ}F$ at 24 hours whereas the 4-in by 8-in specimens under the blanket had lower temperatures (see Figures 1 and 2, which display the air, and the mid depth overlay, and specimen temperatures in sections 1 and 2). The contractor selected the use of WR+R at the lower dosage rate of 25 oz/yd³ (Section 1) for economic reasons and also to minimize possible retardation. The temperature profile in the overlay for both sections 1 and 2 indicate a delay of about 3.5 hr before a temperature rise occurs.

To determine the effects of bonding material, two methods of testing were used. In one (the shear test), 4-in diameter cores were drilled, and then the bond area was sheared. In the other (the pull-off test), 2-in diameter cores were drilled through the overlay and into the base concrete to a depth slightly below the bond interface. A cap was attached to the top of the core by an epoxy resin, and a load was applied to pull off the cap and thus apply a direct tensile stress on the bond area. The tests were made 24 hr after placement at the plant. Because of difficulties in controlling the rate of loading on the machine at the plant, a definite conclusion could not be drawn in the shear test. With the direct tension test, there was difficulty in applying a uniaxial load on the cap, and also in applying a continuous rate of loading. In view of the difficulties in controlling tests in the plant environment, it was decided to discontinue bond testing at that site.

However, having abandoned the plant bond tests, it was still necessary to evaluate the need for grout on the project. Therefore, in a final effort to determine the bond strength, 4-in diameter cores were drilled from the sites at the plant and brought to the Research Council for shear tests at a specimen age of 2 days. The results, summarized in Table 6, indicate that the bonding grout is not necessary. They show that satisfactory and comparable bond strengths (exceeding 200 psi) were achieved without a bonding grout. The results also show that the type and brand of cement can be different than that in the overlay and the water-cement ratio in the grout can be higher than that in the overlay. These findings were

⊢⋒∑⊄⋒⋩∢⊢⊃⋩⋒ ╓

Figure 1. Temperature data for the trial. Section 1.

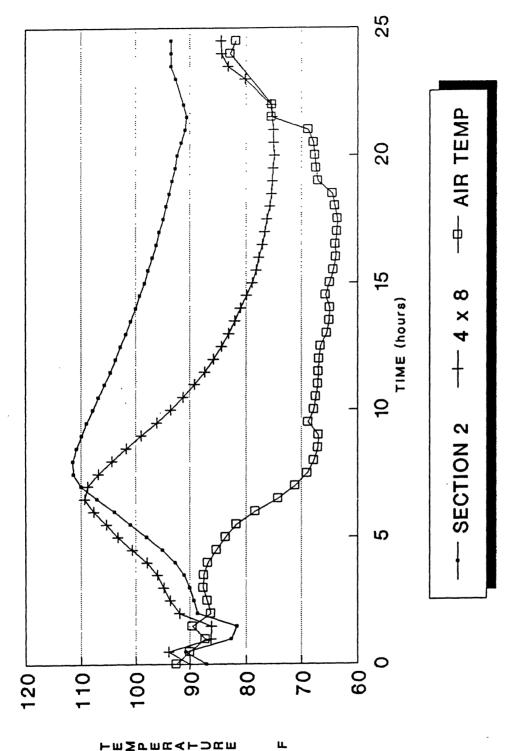


Figure 2. Temperature data for the trial. Section 2.

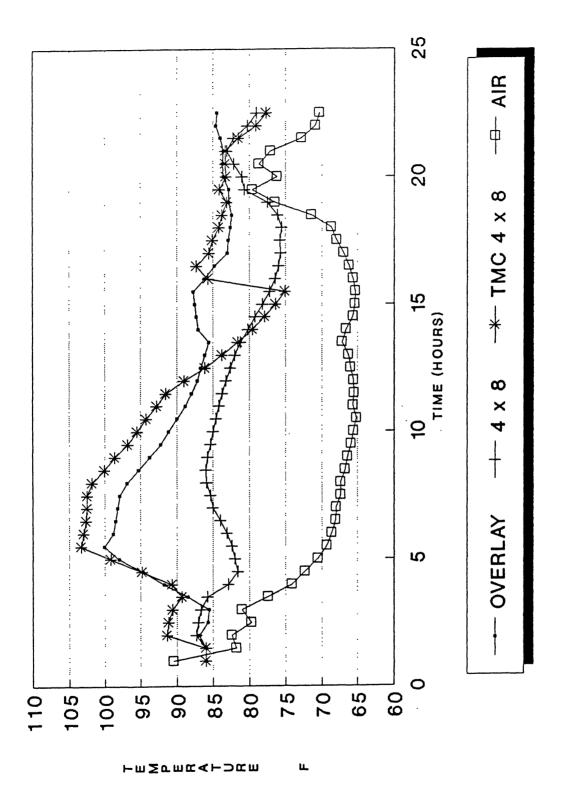
⊢m∑rmt∢⊢⊃tm

9

.

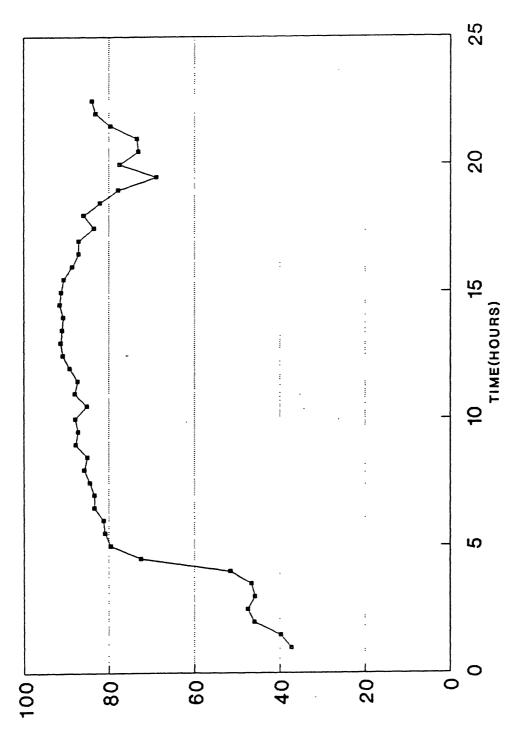
Table 6

Section	Grout	Specimen 1	Specimen 2	Average
2	Туре І	215	365	290
2	None	395	275	335
3	Туре II	430	265	345

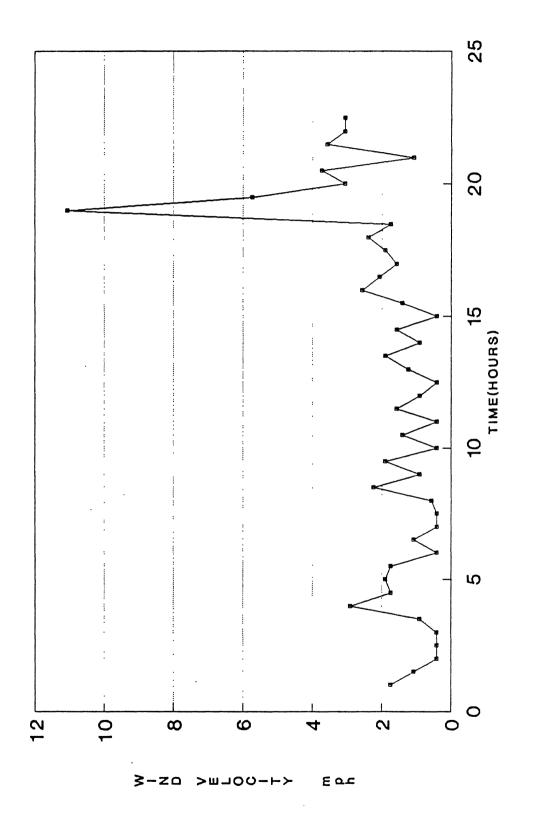

2-DAY BOND STRENGTH IN PSI FOR THE TRIAL SECTIONS

supported by a petrographic examination of lapped vertical slabs cut from the cylinders and examined at the Research Council. These indicated that adequate bonding was achieved in all of the specimens. Thus, it was decided that to verify the lab results in the field, the job grout with a w/c of 0.53 and Type I cement would be used for one-half of the area, and the other half would be placed without a bonding material. The shear test would be used to determine the bond strength.

JOB CONCRETE


The concrete overlay was placed using mixture proportions designated as job concrete in Table 3. Concretes were air entrained with a commercially available neutralized vinsol resin. A WR+R was added at a dosage of 25 oz/yd³.

Two batches of concrete were sampled at the job site. The first one was batched at 2:30 P.M. on June 14, 1990, and the second one at 11:30 A.M. on June 15, 1990. Both batches were tested for compressive strength (AASHTO T 22), tensile strength (ASTM C496), flexural strength (ASTM C 78), and rapid chloride permeability (AASHTO T 277). The specimens were cured under blankets near the pavement. For the first batch, additional cylinders were made to determine the compressive strength using the temperature-matched curing concept (TMC). Special molds with heating elements were used to match the temperature of the 4-in by 8-in specimen in the mold with that of the concrete by monitoring the mid-depth temperature of the overlay with a thermocouple. At the same time, the air temperature, the wind velocity, and the relative humidity were continuously measured. The temperatures of the air, at mid-depth of the overlay, in the 4-in by 8-in cylinder kept under the insulating blankets and in the specimen in the TMC mold are given in Figure 3. The data on environmental conditions (air temperature, RH, and wind velocity) given in Figures 3 through 5 indicate that very favorable conditions existed for placement of concrete. The rate of evaporation from the concrete surface was minimal, and the air temperatures were high enough to provide an adequate rate of hydration. The temperature data indicate that, initially, the TMC molds follow the actual temperature of the overlay closely but are several degrees above the



.

₩₩J<**+**->₩ IDΣ-0-+> %

Figure 4. Relative humidity data from the job.

Table	7
-------	---

	No. of Specimens	B1	B2
Air content, %	1	5.4	5.7
Slump, inch	1	2.8	2.2
Compressive strength, psi:			
TMC 17 hour	2	3,450	_
TMC 24 hour	2	4,040	—
17 hour	2	2,940	_
18 hour	2		3,560
24 hour	2	3,760	4,090
7 day	2	5,240	5,590
28 day	2	6,060	6,750
Tensile strength, psi:			
24 hour	2	360	345
7 day	2	460	475
28 day	2	545	550
Flexural strength, psi:			
28 day	3	835	795
Permeability, coulombs:			
28 day	2	5,290	4,220
90 day	2	4,070	2,590

TEST RESULTS FOR THE JOB CONCRETE

overlay temperature. However, at about 12 hours after placement, failure of a generator resulted in a drop in the temperature in the TMC molds. The temperature profile for the 4-in by 8-in cylinders shows that the same temperature rise achieved in the overlay or the TMC mold was not obtained by curing under the insulating blankets.

The compressive strength values given in Table 7 indicate that 3,000 psi were easily achieved in less that 24 hours. In the TMC mold, higher early strengths were obtained than with the regular molds cured under blankets. This would be expected since higher temperatures were developed in the TMC molds. The different strength tests for various ages summarized in Table 7 were all satisfactory. The chloride permeability (coulomb) values at 28 days were in the high range, but, at 90 days, they were either in the moderate or close to the moderate range.

The temperature data indicate that the job concrete temperature rise occurred at about 3.5 hours after batching as it did in the trial batches. This is a considerable delay, and should concretes with higher early strengths than required in

Table 8

Specimen	Bonded With Grout	Bonded Without Grout	Base Concrete	Overlay
1	595	650	835	765
2	605	760	630	775
3	900	740	940	680
Average	700	715	800	740
Standard Deviation	173	59	158	52

SHEAR STRENGTHS AT 7 DAYS

this project be desired, the possibility of using an accelerator rather than a retarder should be considered.

One-half of the overlay was placed without a bonding agent, and one-half was placed with a grout that contained Type I cement at a w/c ratio of 0.53. To determine the bond strengths at different sections with and without the bond, cores were taken and tested for shear strength at 7 days in the laboratory. The results are summarized in Table 8. These results indicate that excellent bond strengths are achieved with and without the grout, and that 7-day bond strengths at the interface were close to the shear strengths of both the base concrete and the overlay concrete.

CONSTRUCTION OPERATIONS

Traffic Control

Traffic control was accomplished through the provision of temporary detours on each end of the 1-mile-long site. The detours set up the two northbound lanes on the four-lane, divided highway for two-way operation so as to accommodate the southbound traffic during working hours. During the initial pavement preparation and the final finishing work after the overlay, southbound traffic was permitted to use the test site during nonworking hours, generally overnight and on weekends.

Preparation of Existing Pavement

Pavement Repairs

The preparation of the existing pavement began in the spring of 1990 with the removal and replacement of concrete considered to be too badly damaged to leave in place under the overlay. Replacement concrete was standard pavement repair concrete with design strength of 3000 psi in 24 hours. Compressible material 1/2 in wide was placed on one side of each repair in the old pavement. All joints in the old pavement were cleaned and resealed with hot-poured joint sealing materials conforming to AASHTO Specification M173.

Surface Preparation

Preparation of the surface of the existing concrete pavement to ensure full bonding of the thin overlay was a major issue throughout the planning and conduct of the project. As was finally agreed upon and specified, final preparation was accomplished through the use of shotblasting machines traveling in tandem, triplicate, or quadruple. In order to preclude surface contamination by traffic, actual sandblasting operations did not begin until the lanes were closed to traffic early on the morning of June 14, 1990, the day chosen to begin placement of the overlay. Each machine covered approximately an 18-in-wide path with each pass. Although some trial and error was necessary to achieve the texture finally agreed upon by all parties, once the speed, etc. of the machines was established, no further problems were encountered in that operation. The texture was considered to be acceptable when coarse aggregate particles in the existing surface had a clean exposed face. Final touchup of the surface was by use of a portable sandblasting machine placed about 100 ft ahead of the paving machine in order to catch oil spills, etc. from the paving operation. Adequate bond strengths were obtained both with and without the application of a grout.

Paving

Placement of Concrete

Paving with a Gomaco slipform paver began at 1:00 P.M. June 14, 1990. Concrete was deposited from 8 yd³ transit mix trucks in front of the paver directly on the existing pavement. Once the paver had moved forward enough to carry a "head" of concrete, the portland cement slurry grout (where used) was sprayed from a grout machine onto the surface immediately in front of the paver and then swept into final place with brooms. For approximately the second half of the project, the grout was omitted.

Early in the paving operation, plywood pads were used to cover the shotblasted old pavement as a protection against oil drippings, etc. from the concrete trucks. Soon, however, it was clear that the trucks were relatively new and well maintained, so the pads were not needed. Since their use was very cumbersome, the contractor was glad to discontinue that portion of the operation.

During placement, two major difficulties were encountered in the supply of concrete. First, the supply was somewhat slow because of the number of trucks assigned to the project. Although the haul distance was very short, project layout was such that trucks furnishing concrete early in the work had to back most of the 1-mile length of the project. In the grouted section, delays in concrete delivery caused some concern that the grout might dry out prior to concrete placement. This was soon overcome by a decision to rake concrete from the paver head forward to cover the grout until delivery resumed. A second concrete supply problem occurred for a short time when the mixture contained excessive water and several loads had to be rejected because of high slump.

Finishing

In general, the mixture was of such a consistency that the paver, with spud vibrators at about 18-inch centers, produced an overlay with well formed edges requiring little handwork. Magnesium floats were used to close the surface while some hand work was done on the edges. A fine texture was applied by the use of a burlap drag attached to a hand-operated bridge, which was moved at intervals as judged by the finishers. The transverse tining specified by VDOT (1/8 in by 1/8 in with 3/4 in wide land areas) was applied by a hand-held wire tine.

Curing

Liquid membrane curing compound was applied from a rolling bridge as soon as the tining was completed. This was followed by the application of a curing blanket having a minimum R value of 0.5 and intended to hold the heat of hydration and contribute to early strength development. As noted earlier, air temperatures, relative humidities, and wind velocities were such that curing was not considered to be a major concern on the project.

Joint Sawing and Sealing

The virtual certainty that all joints and cracks in the underlying old pavement will reflect through the overlay in a very short time dictated that a great deal of attention be paid to ensure that the new cracks were directly above the old. With the help of project inspectors, the contractor used a stringline across each transverse joint and crack to place paint marks on each shoulder where a second stringline could be stretched after the overlay.

As soon as the overlay was sufficiently hardened to hold the equipment, the second stringline was used to mark the locations of early saw cuts. These cuts, approximately 1/8 in wide, accommodate the early shrinkage cracking and prevent the formation of random or uncontrolled cracks. The location, configuration, and

depths of these saw cuts were the subject of a preconstruction discussion and ultimately were done in conformance with ACPA suggestions. Transverse sawcuts were 1/2 in deeper than the thickness of the overlay to insure positive control. On the other hand, because of the difficulty in precisely locating longitudinal joints in the old pavement after application of the overlay, the decision was made to saw the overlay to a depth of only 1 1/4 in over those joints. The thinking in this case was that the provision of some room for vertical "wander" of the reflection crack could prevent twin cracking which might occur if a full depth sawcut was to miss the joint in the underlying pavement.

At the earliest possible time, most transverse joints were resawed and sealed with preformed compression seals. Longitudinal joints and transverse joints over repair joints containing expansion material were sealed with a rubberized, asphalt, hot-poured, joint-sealing material.

OPENING TO TRAFFIC

The project was opened to traffic 58 hr after the first load of concrete appeared on the job. Although this length of time did not meet the 48-hr target, project personnel were convinced that only a few logistical modifications in the transportation of concrete and in the sawing operations would have permitted that target to have been met easily.

EARLY PERFORMANCE

Roughness tests conducted on the project at an age of about 1 week showed that the original IRI (International Roughness Index) of some 160 in/mile was not substantially changed by the provision of the 3 1/2-in overlay. This finding was not surprising to project personnel in view of the relatively good original ride and in view of the frequent interruptions in the paving operation because of the erratic supply of concrete.

A thorough evaluation of the project in March 1991 revealed only one narrow uncontrolled crack. The slight spalling of some sawed joints appeared related to the harsh texture rather than to a materials or structural condition. All joint seals appeared to be in excellent condition. Early performance of the project was judged to be excellent.

CONCLUSIONS

Based on construction experience and the observations of very early performance, the following conclusions appear justified for the Virginia fast-track project.

- 1. Concrete overlays achieving compressive strengths of 3,000 psi within 24 hours can be placed using either Type III or finely ground Type II cements with a w/c of 0.42 or less.
- 2. The generation of external heat or retention of the heat of hydration of the concretes assists in faster strength development at early ages.
- 3. Overlays can be bonded to properly prepared base concrete with or without the bonding grout.
- 4. Thin bonded concrete overlays applied in a fast-track mode appear to be a suitable alternative for rehabilitation of jointed concrete pavements when those pavements are not seriously distressed but are in need of structural enhancement.
- 5. Nondestructive test methods of maturity and pulse velocity can provide rapid evaluations of in-situ concrete strengths. The maturity method also provides information on temperature gradients, which indicate whether there is a possibility of thermal cracking.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the contributions of numerous field and central office personnel in bringing the fast-track project to a successful conclusion. Not the least of those responsible was R. R. Long, Jr., former research scientist, who through his rapport with many of the design and construction personnel played a major role in bringing the project about. Mr. Long was assisted in project development by Gary Jarrell of the maintenance division, Corky Cutright of the materials division, and by numerous others in the Suffolk District and Accomac Residency offices. Resident Engineer Will Cumming, Assistant Resident Engineer Kenny Wright, and Project Inspectors Kenny Marshall and Randolph Wiggins were especially helpful in bringing the project into being and in the actual construction.

REFERENCES

- 1. Melville, Phillip L. 1987. "Whitetopping-1a feasibility study," unpublished report prepared for the Virginia Transportation Research Council.
- 2. National Cooperative Highway Research Program. 1982. Synthesis of Highway Practice No. 99. Resurfacing with portland cement concrete. Washington, D.C.
- Tayabji, Shiraz D. and Claire D. Ball. 1988. "Field evaluation of bonded con-3. crete overlays," Transportation Research Board. Record No. 1196.
- 4. Grove, James D. 1989. "Blanket curing to promote early strength concrete." Transportation Research Board. Record No. 1234.
- FHWA Report, Demonstration Project No. 76 and Special Project No. 201. "Ac-5. celerated rigid paving techniques, phase 1 report, Mix design and trial batches, Route 13 in Northampton County, Virginia." Federal Highway Administration. Washington, D.C.